Specimens of a Chart of Biography. Thurgdiden Polybrics Herodotus Danosthenes Sallunt Xenophon. Innereon Aridarchurs Theocrites Aristophanes Plauter Thales indar Ennuna Buchid Septimeter Aristalle Yorar

ena Stateua

lechniqu Scipio annibut lauin **Temporal Data**

Hippocrates

Sorrales

Benjamin Bach http://benjbach.me University of Edinburgh 2020

Pythagarad

Hopaman

Cato Conuor

Tamechus

deretino

Pompey

1. Contar

Brutias

Milhridates

Syll

Catullus

3

MEN

0

70

80

90

1800

Events

Trajectories

Calendar

Tasks

- Min, max values, specific values
- Trends and outliers
- Change and rate of change
- Sequence
- Dynamicity / variation
- Noise vs. signal
- Check for specific events that may influence the data
- Correlate and compare time series
- Space + time

Time is complex

The Life of a Typical American

- Cyclic
- Quantities
- Scales
- Parellity
- Granules: weeks, months

Outline

- Event data
- Time serie
- Many time series
- Multidimensional temporal data
- Space-time cubes
- Time curves

Events and durations

Trend chart

Time series

Complexity

https://www.writerscafe.org/writing/TheoLueck/1416170/

Dual-Scale Data Charts

Calendar data

https://www.perceptualedge.com/articles/guests/intro_to_cycle_plots.pdf

Cycle plots: by month

Cycle plots: by week day

https://www.perceptualedge.com/articles/guests/intro_to_cycle_plots.pdf

Radial time visualizations

- Show cyclical data / values
- Outer layers getting longer!

Heatmap

- Calendar data + numerical values
- + Row and column effects
- + Easy look up
- + Space efficient
- Precise value comparison hard

Calendars

			Bled, Slovenia	Romania
				Austria
		Asia	Okanagan	Budapest 🖄
		- Canada		
	02 09 16 23 30	Europe	03 10 17 24 01 08 15 22 29 05 12 19 26 03 10 17 24 21 07 14 21 28	
	03 10 17 24 31	USA 🔤 USA	04 11 18 25 02 09 16 23 30 06 13 20 27 04 11 18 25 01 08 15 22 29	
Ξ	04 11 18 25 01	331 181 221 01 1081 181 221 25	05 12 19 26 03 10 17 24 31 07 14 21 28 05 12 19 26 02 09 16 23 30	06 13 20 27 04 11 18 25 01 08 15 22 29 06 13 20 27 ¹¹
2	05 12 19 26 02	07 16 23 02 07 16 23 30	06 13 20 27 04 11 18 25 01 08 15 22 29 06 13 20 27 03 10 17 24 01	27 14 21 28 25 12 19 24 02 09 16 23 30 07 14 21 28 Washington
	06 13 20 27 03	10 17 24 03 10 17 24 31	07 14 21 28 05 12 19 26 02 09 16 23 30 07 14 21 28 04 11 18 25 01	
Ē	07 14 21 28 04	11 18 25 04 11 18 25 01	08 15 22 29 06 13 20 27 03 10 17 24 01 08 15 22 29 05 12 19 24 22	
	01 08 15 22 29 05	12 19 24 05 12 19 24 05	07 16 23 30 07 14 21 28 04 11 18 25 02 07 16 23 00 06 13 20 27 03	10 17 24 31 08 15 22 28 05 12 19 26 03 10 17 24 81 ³⁶
	01 08 15 22 29 05	12) 19 26 04 11 18 25 01	08 15 22 29 06 13 20 27 03 10 17 24 01 08 15 22 29 05 12 19 26 02	09 16 23 30 07 14 21 28 04 11 18 25 02 09 16 23 00 ⁵⁸
	02 09 16 23 30 06	13 20 27 05 12 19 26	ustin 20 00 13 Leavenworth 21 02 02 18 23 20 18 13 Ontorio	17 24 01 08 15 22 29 05 12 19 24 03 10 012 24 31 M
17	03 10 17 24 31 07	14 21 28 06 13 20 27	-24 01 08 19 22 29 09 12 17 26 03 10 17 24 31 007 14	18 25 02 07 16 Seattle 20 27 04 11 18 25
5	04 11 18 25 01 58	15 Florida 1 28 0	11 18 25 22 07 16 23 30 06 13 20 27 04 11 18 25 01 08 15 21 Portlan	nd 28 03 10 07 21 28 05 12 19 26 W
	05 12 19 26 02 09	16 23 01 08 15 22 29 D	1005 26 00 10 17 24 31 07 14 21 28 05 12 19 26 02 09 16 23 as us	1d AU 27 04 11 18 25 01 08 15 22 29 06 13 00 07 Tr
	06 13 20 27 23 10	17 24 02 09 16 23 30	27 04 11 18 25 01 04 Banff 1 to 3 20 27 23 10 17 24 31 07	14 21 28 25 12 19 26 C2 09 16 23 30 C7 14 21 28 Pt
L	07 14 21 28 04 11	18 25 03 10 17 24 31 00	14 21 28 25 12 19 26 02 09 16 23 30 07 14 21 28 24 11 18 25 01 08	15 22 29 26 13 20 27 03 10 17 24 01 08 15 22 29 ⁵⁴
	06 13 20 27 03	10 17 24 03 10 17 24 31	07 14 21 28 05 12 19 26 02 09 16 23 30 07 14 21 28 04 11 18 25 01	08 15 22 29 06 13 20 27 03 10 17 24 01 08 15 22 29 ⁵⁴
Ē	07 14 21 28 04	11 18 25 04 11 18 25 0	08 15 22 29 06 13 20 27 03 10 17 24 01 08 15 22 29 05 1 Ontorio	77 18 23 10 07 14 21 28 04 11 18 25 02 09 16 23 30 M
3	01 08 15 22 29 05	Elorida	07 16 03 01 07 14 21 28 04 11 18 28 02 07 16 23 30 06 U	10 17 24 01 08 15 22 29 05 12 19 26 03 10 17 24 31 T
20	02 09 16 23 30 06	13 20 27 03	10 17 24 21 08 18 22 29 05 12 19 24 03 10 17 24 31 07 14 21 28 04	11 18 25 02 07 16 23 Atlanta 27 04 11 18 25
	03 10 17 24 31 07	14 21 28 07 14 21 28 04	11 11 11 12 15 00 15 00 15 12 29 05	12 19 26 03 10 17 24 28 05 12 19 26 T
	04 11 18 25 01 08	is 22 of France	12 19 05 03 31 07 14 21 28 05 12 19 26 02 09 16 23 30 06	13 20 27 04 11 18 25 01 08 18 22 29 06 13 20 27 Pr
L	05 12 19 26 02 09	16 23 02 UV 16 23 30 00	13 20 27 04 11 18 25 01 08 15 22 29 06 13 20 27 03 10 17 24 31 07	14 21 78 05 12 19 26 02 09 16 23 30 07 14 21 28 ⁵⁴
	05 12 19 26 02	09 16 23 02 09 16 23 30		07 14 21 28 05 12 19 26 02 09 16 23 30 07 14 21 28 54
	06 13 20 27 03	10 17 24 03 10 17 24 3	07 14 21 28 05 12 19 26 02 09 16 23 30 07 14 21 28 04 11 18 25 (Ontario 24 06 13 0 27 03 10 17 24 01 08 15 22 29 M
₹r	07 14 21 29 04	11 18 25 04 11 18 25 01		
2	01 08 15 22 29 05	12 19 26 05 12 19 26 05		10 17 24 01 06 15 22 29 05 12 019 26 03 10 17 24 31
	02 09 16 23 30 06	13 20 27 Florida	10 17 24 01 08 15 22 29 10 17 24 31 17 14 21 28 04	11 18 25 02 07 16 23 30 06 13 000 27 04 11 18 25
	03 10 17 24 31 07	14 21 28 04	11 A18 25 22 07 16 13 30 06 13 20 27 06 11 18 25 21 08 Seattle	12 19 24 03 10 17 24 31 17 1 14 21 22 05 12 19 26 F
L	04 11 18 25 01 08	15 22 01 08 15 22 29 0	12 19 26 03 10 17 24 31 07 14 21 28 05 12 19 26 12 09	13 20 27 04 1 1 18 25 01 0 15 22 29 06 13 20 27 ⁵⁴
	04 11 18 25 01	08 15 22 01 08 15 22 2		06 13 20 27 04 11 16 25 01 08 15 22 29 06 13 20 27 54

Comparing multiple timelines?

https://www.writerscafe.org/writing/TheoLueck/1416170/

Horizon graphs

Heer, Jeffrey, Nicholas Kong, and Maneesh Agrawala. "Sizing the horizon: the effects of chart size and

Horizon Graphs

More Complex Data

Beveridge Curve: William Beveridge, econ.

https://statmodeling.stat.columbia.edu/2013/06/12/how-to-best-graph-t he-beveridge-curve-relating-the-vacancy-rate-in-jobs-to-the-unemploy ment-rate/

Beveridge Curve

Recessions!

105 1981-1982 recession 100 1973-1975 recession 95 78:Q 2001 recession 90 81:Q3 85 05:Q1 01:Q2 80 74:Q1 83:Q4 75 08.0 70 65 '6:Q4 60 55 03:Q2 50 75:Q1 45 09:Q 40 35 30 25 20 2 3 5 6 7 8 9 4

Job vacancy index

110

Unemployment rate (percent)

2008-2009 recession

82:Q4

11

10

Note: Data are guarterly and span the 1951:Q1-2010:Q2 period. [Figure updated 8/19/2010, correcting the miscoloring of the 2001 recession line Source: Conference Board, BLS, authors' calculations.

https://statmodeling.stat.columbia.edu/2013/06/12/how-to-best-graph-t he-beveridge-curve-relating-the-vacancy-rate-in-jobs-to-the-unemploy ment-rate/

Connected Scatterplot

Connected Scatterplots: encoding time

Moritz Stefaner: <u>http://truth-and-beauty.net/projects/remixing-rosling/</u>

Time vs. Time: Story Curves

Time Curves Creation

Bach, Benjamin, et al. "Time curves: Folding time to visualize patterns of temporal evolution in data." *IEEE transactions on visualization and computer graphics* 22.1 (2015): 559-568.

Time Curves

Bach, Benjamin, et al. "Time curves: Folding time to visualize patterns of temporal evolution in data." *IEEE transactions on visualization and computer graphics* 22.1 (2016).

Time Curves: Climate

Time Curves: Visual Patterns

Time Curves

- + Amount of change
- + Signatures
- + Comparison
- Details
- Artifacts due to projection
- Non-trivial

Trajectories

Charles Joseph Minard (1781-1870)

Space-Time Cubes

Space Time Cubes

Space-Time Cubes

llägcrstrand, Torsten. "What about people in regional science?." *Papers of the Regional Science Association*. Vol. 24. 1970.

Kraak, Menno-Jan. "The space-time cube revisited from a geovisualization perspective." *Proc. 21st International Cartographic Conference*. Citeseer, 2003.

Space-Time Cubes

(b) Space flattening (on top)

Space time cubes everywhere!

A word on 3D visualization

- Causes occlusion
- Perspective distortion
- Interaction required
- Orientation might be tricky

- Use 3D as interaction affordances
- Use 3D as thinking tools and metaphors

Interactive Exploration

"Poke"-access

Cutting plane

Mouse access

Cutting plane

Transparency + bending Opening

Interactive Exploration

Small Time Mulan

Operations

Eadward Muybridge: Chrono photography

Copyright, 1878, by MUYBRIDGE.

MORSE'S Gallery, 417 Montgomery St., San Francisco.

HE HORSE IN MOTION.

Illustrated by MUYBRIDGE.

AUTOMATIC ELECTRO-PHOTOGRAPH.

"SALLIE GARDNER," owned by LELAND STANFORD; running at a 1.40 gait over the Palo Alto track, 19th June, 1878. The negatives of these photographs were made at intervals of twenty-seven inches of distance, and about the twenty-fifth part of a second of time; they Illustrate consecutive positions assumed in each twenty-seven inches of progress during a single stride of the mare. The vertical lines were twenty-seven inches apart; the horizontal lines represent elevations of four inches each. The exposure of each negative was less than the two-thousandth part of a second.

Small Multiples

Flow Diagram Small Multiples

Joseph Minard

Small Multiples

Thudt, Alice, Dominikus Baur, and Sheelagh Carpendale. "Visits: A Spatiotemporal Visualization of Location Histories." *EuroVis (Short Papers)*. 2013.

Coloring+ Flattening

Cross-cutting

Parc Naturel

Regional du Morvan

EIN?

Vichy

AT1

Clermont-Ferrand

Versailles

leans

A71

Bourges

A71

France

Parc Naturel

Regional de

dillevaches

"Drilling"

- + Compare regions
- + Look-up regions
- + Details on regions
 - Occlusion

Drilling: Glyph Maps

ᡗᢉ᠋ᡗᢉ᠕ᢂ᠕᠓᠕᠕᠕᠕᠕᠕᠕᠕᠕ γ MMMMMMMMM VC VV Jwh MNWWWY $\gamma\gamma\gamma$ NWLILANNNNN $\mathcal{N}\mathcal{M}\mathcal{M}\mathcal{M}$ 5 \mathcal{M} MWWWWWWWWWWWWWWWWWWWW which www.www.www.www.www.www. \mathcal{M} www.www.www.www.www.www.www. \sim \sim \mathcal{M} MM ѵѵѵѵѵѵѵѵѵѵѵѵѵѵѵѵѵѵѵ

https://vita.had.c o.nz/papers/gly ph-maps.pdf

How Scotland's political geography changed, seat by seat

Drilling: Geo-flow

- Compare regions Look-up regions Details on regions +
- +
- +
- Compare far away glyphs Glyphs can become small

3D Renderings: density maps

3D + drilling

https://gis.stackexchange.com/ques tions/202882/create-space-time-cu be-in-arcgis-for-desktop

Trajectory Wall

Andrienko, G., Andrienko, N., Schumann, H., & Tominski, C. (2014). Visualization of trajectory attributes in space–time cube and trajectory wall. In *Cartography from Pole to Pole* (pp. 157-163). Springer, Berlin, Heidelberg.

More operations

Bach, Benjamin, et al. "A descriptive framework for temporal data visualizations based on generalized space-time cubes." *Computer Graphics Forum*. Vol. 36. No. 6. 2017.

Khronos Proector

Further Reading

- Alberto Cairo: The Truthful Art: Chapter
 8: Revealing Change
- Aigner, Wolfgang, et al. Visualization of time-oriented data. Springer Science & Business Media, 2011.
- Bach, Benjamin, et al. "A descriptive framework for temporal data visualizations based on generalized space-time cubes." Computer Graphics Forum. Vol. 36. No. 6. 2017.
- Rosenberg, Daniel, and Anthony Grafton.
 Cartographies of time: A history of the timeline. Princeton Architectural Press, 2013.

Cartographies of Time

A History of the Timeline

Duniel Rosenberg and Anthony Grafton